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Abstract

In this paper we extend a layerwise higher-order shear-deformation theory to model a sandwich plate impacting with
an elastic foundation at a low velocity. A new concept of sublaminates is introduced, and the new sandwich plate theory
satisfies the continuity conditions of interlaminar shear and normal stresses, accommodates the normal and shear
stresses on the bonding surfaces, and accounts for non-uniform distributions of transverse shear stresses in each layer.
Moreover, the use of sublaminates enables the modeling of shear warpings that change with the spatial location, vi-
bration frequency, and loading and boundary conditions. A finite-element model based on this sandwich plate theory is
derived for performing direct transient analyses to predict the initiation and location of critical matrix crack and the
threshold of impact damage. Moreover, analytical shear warping functions, shear coupling functions, and normal strain
functions due to in-plane stretching, bending, transverse shearing, and surface loading are presented. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Sandwich structures have long been recognized as one of the most weight efficient plate or shell con-
structions for resisting bending loads. The aerospace industry, with its many bending stiffness dominated
low-weight structures, has employed sandwich construction using aluminum honeycomb cores extensively.
The most common currently fielded sandwich construction suffers from two major maintenance problems:
corrosion damage to the core from trapped moisture, and low-velocity impact damage. The core corrosion
problem can be greatly reduced by using a non-corrosive core such as Nomax honeycomb. Prediction of
low-velocity impact damage to such structures is the subject of the present research. Low-velocity implies
that the material properties can be assumed to be independent of strain rates. The failure modes commonly
observed in composite sandwich plates subjected to low-velocity impact are fiber failure, matrix cracking,
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delamination, and core crushing (Harrington, 1994), which are mainly caused by severe and complex three-
dimensional (3-D) stress states.

Many of the current military and commercial applications of composite materials call for thick-section
laminates composed of over 100 layers or sandwich panels with a honeycomb core between two face sheets
of laminated composites. A primary concern in the analysis of thick-section laminates and sandwich panels
is that transverse shear and normal stresses and deformations may not be negligible. Moreover, it is well
known that low-velocity impact on a composite laminate can cause significant internal matrix cracks,
delamination, and reduction in strength and stiffness. Experimental results in the literature show that initial
impact damage is primary associated with matrix cracking and delamination is usually accompanied by a
critical matrix crack (Choi et al., 1991). To predict the delamination and matrix cracking of composite
laminates subjected to impact, an accurate estimation of transverse normal and shear stresses plays the key
role in analysis.

For isotropic plates, transverse shear stresses g3 and g,3 can be obtained from elasticity solutions as
(Shames and Dym, 1985)

472 47?
0'13—G'))5<1—ﬁ>, 623—G”/4<1—ﬁ)

Here G is the shear modulus, /4 is the thickness, z is the thickness coordinate, and y, and 75 are shear ro-
tation angles on the reference plane xy. We note that this form of g5 is valid only if the y-axis represents the
neutral axis of the crosssection on the yz plane, and the form of a,; is valid only if the x-axis represents
the neutral axis of the crosssection on the xz plane. For an anisotropic laminate, the neutral axis of the
crosssection on the xz plane may not be on the midplane, the neutral axis of the crosssection on the yz plane
may not be on the midplane, and these two neutral axes may not be on the same plane. These cause dif-
ficulties in and reveal complexity of the analysis of anisotropic laminates. However, for symmetric and
skew-symmetric laminates, the neutral axes are always on the midplane.

For a simply supported isotropic beam subjected to a uniformly distributed transverse load, Shames and
Dym (1985) showed that o,3/01, is proportional to A/L and g33/01; is proportional to (h/L)2, where ¢ 1s
the axial stress due to bending, L the beam length, and % the thickness. Hence, the transverse normal stress
a33 1s usually neglected and the transverse shear stresses are sometimes neglected in the analysis of thin-
walled structures. However, transverse shear and normal stresses can be significant in thick composite
laminates because of non-uniform distributions of external loads, elastic moduli, and Poisson’s ratios.

In analyzing thick sandwich plates many researchers use 3-D finite elements, which are computational
expensive. Some other researchers use predictor-corrector approaches, which use a classical laminate theory
to predict the global response and then use 3-D elasticity equations to correct the predicted stresses for
failure analysis. In this approach, the major questionable assumption is the rough modeling or negligence
of interlaminar shear stresses. Hence, it is highly desirable to have a model that can capture the important
3-D effects due to through-thickness variations of displacements and stresses in thick laminates but
maintain the efficiency and convenience of a 2-D model.

Two approaches have been taken in the development of laminate theories that incorporate higher-order
effects in thick laminates; they are the equivalent single-layer approach and the discrete-layer approach. In
equivalent single-layer theories, high-order terms are maintained in the expansion of the displacement
components in the thickness coordinate (e.g., Savoia and Reddy, 1992). In this way, non-linear variations
of displacements, strains, and stresses through the thickness of the laminate are permitted along with an
approximation of transverse normal deformations and/or transverse shear deformations. These theories all
provide improvements over the first-order shear-deformation theory but also have a common drawback.
The thickness variation of displacements, and thus strains, is assumed to be continuous and smooth. This
characteristic precludes the satisfaction of transverse stress continuity at interfaces between adjacent layers
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of different materials and does not accurately reflect the kinematics in laminates that contain adjacent plies
with drastically different constitutive properties. To overcome the drawbacks of equivalent single-layer
theories, layerwise theories have been developed in which a unique displacement field is assumed within
each layer. Theories of this type may be classified into two groups according to whether or not the number
of degrees of freedom (DOFs) in the theory is dependent on the number of layers in the laminate. When the
number of DOFs is coupled to the number of layers, the computational effort required in the analysis of
thick laminates is comparable to that required by a fully 3-D analysis (Barbero et al., 1990). A few discrete-
layer theories have been developed that contain a constant number of DOFs irrespective of the number of
layers in the laminate (Bhimaraddi, 1995; Pai, 1995). In these theories, the additional DOFs are eliminated
by enforcing continuity of transverse shear stresses at the interface of each two adjacent layers and by
satisfying the zero shear traction conditions on the top and bottom surfaces of the laminate.

Comparison with results from 3-D continuum-based theories reveals that discrete-layer theories with a
constant number of DOFs provide accurate approximations of structural response as well as through-
thickness variations of in-plane displacements and stresses for composite laminates if the number of layers
is not too large. However, it has been found that as the number of layers in the laminate and/or the
complexity of the lamination scheme is increased, errors may increase to unacceptable levels.

In this paper we improve the layerwise higher-order shear-deformation theory of Pai et al. (1993) and Pai
and Palazotto (1995) for modeling thick sandwich plates by introducing the concept of sublaminates and
accounting for the transverse normal stress.

2. Sandwich plate theory

Fig. 1 shows the sandwich plate under investigation with its construction, loading conditions, and the
coordinate system used. To include transverse shear deformations in the modeling of a general anisotropic
laminated plate, each layer needs an assumed displacement field because of material non-uniformity
through the laminate thickness. To account for transverse normal and shear stresses, we modify the lay-
erwise third-order shear-deformation theory of Pai et al. (1993). In Fig. 1, xyz is the reference coordinate
system, xy represents the reference plane of the laminate, x and y are in-plane coordinates, and z is the
thickness coordinate. We introduce here the concept of sublaminates to improve the accuracy in predicting
transverse shear strains by using more dependent variables. A composite laminate will be divided into M
sublaminates. The mth sublaminate has &, layers and two shear rotation angles yff”) and «/g"” at the xy plane,
as shown in Fig. 2. For the ith layer of the mth sublaminate, the displacement field is assumed to be

u"™ = u—wz+ "z o2 4 S
u™ = v —wyz 49"z + M2 4 g (1)
ugmz) — w4t Olgmj>Z+ [),gm,l)zz

Here, u(x,y,t), v(x,y,t), and w(x, y, ) are the displacements of the point on the xy plane, ¢ denotes the time,

ocgm‘i)(x, »,t) and ﬂgm")(x, »,t) account for the displacement along the x-direction due to shear warping,

2" (x,y,0) and 5"
o™ (x,y,1) and " (x,y, ) account for the variation of transverse normal displacement due to thickness
change. Moreover, ( ), =0( )/ox and ( ), =9( )/0y.

The constants o™, " o™ and " can be determined using the continuity conditions of inplane
displacements and interlaminar shear stresses and the free shear stress conditions on the top and bot-
tom surfaces of the laminate as shown next in Section 2.1. Moreover, the constants oc(;"’i) and ﬁg’"’i) can be

x,y,t) account for the displacement along the y-direction due to shear warping, and
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48 graphite-epoxy layers
~———Nomax core
96 graphite-epoxy layers

Fig. 1. The loadings, coordinates, and geometry of a sandwich plate impacting with an elastic foundation.
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Fig. 2. The definitions of sublaminates and dependent variables.

determined using the continuity conditions of the transverse normal displacement and stress and the
normal stress conditions on the top and bottom surfaces of the laminate as shown in Section 2.2.
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It follows from Eq. (1) that the transverse shear strains of the ith layer of the mth sublaminate are

65};11) _ V(Sm) + ZZOC(ImJ:) + 322ﬁ(1m.l:) (2)
e = o 4 2zl 4 32 p4m0

Because the thickness change has no signiﬁcant. influence on transverse shear strains (Pai and Palazotto,
1995), we neglect o™ and " in € and e i
Using tensor transformations, one can obtain the transformed stiffness matrix [Q m‘l)} for the ith layer of

the mth sublaminate from its principal stiffness matrix [Q")] and its ply angle (measured with respect to the
x-axis), and the stress—strain relations are given by (Whitney, 1987)

=) (o)) ®

where
T T
(mi) | _ (mji) _(mi) _(mi) _(mi) (m,i) (m,i) _(m,i)
{‘71 }—{611 02 5,033 507 }a {‘72 } {‘723 013 }
) . . ) NT ) . 8T
) R L e e N e G

—(m,i)  —=(m,) myi)  —(m,i)
Qll QIZ Q13 Q16 (4)
—(m,i)  —=(m.i) (m,i) (m,i) —(m,i) (m,i)
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Ql = (myi)  —(m,i) i —(myi) |’ Q = —(mji)  —=(m,)
Ql 3 Q23 Q33 Q36 Q45 Q55
(myi)  —(m,i) mi) (m,i)
Q16 26 Q36 Q66

2.1. Shear warping functions

If there is no delamination, the in-plane displacements u; and u, and interlaminar shear stresses o3 and
a,3 are continuous across the interface of any two adjacent layers. Moreover, a,3 = py, and a3 = ps; at the
bottom surface (i.e., z =z, of the first sublaminate) and o,; = py, and o3 = ps, at the top surface (i.e.,
z = zy,,+1 of the last sublaminate ), where ps, and ps, denote the shear loadings on the top surface of the
laminate and py, and ps; the shear loadings on the bottom surface of the laminate. Hence, we have

(M ,Nyr)
03 " (x yazNw+lat)

0
(M

o13’ )(X%ZNMHv) PSt:()

m Np) (

X, V2N, 11,1 )—ul'"+ll(x v,z1,8) =0 for m=1,...,.M —1
mN’" (X, 25,41, 1) — ”’+ll e, p,21,0) =0 for m=1,....M—1
o (x, y, 2y, 11, 1) — 62';'“1 (,y,z1,£) =0 for m=1,....M — 1
GI'ZN'" (X, 9, 2n, 41, )—a{f“l (x,y,z1,£) =0 for m=1,.... M — 1 )
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ml

1)
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023 (x »,21,t) — pap =0
‘713 (x ,21,t) —psp =0



5050 P.F. Pai, A.N. Palazotto | International Journal of Solids and Structures 38 (2001) 5045-5062

These 4N algebraic equations can be used to determine the 4N unknown constants o™, ", o{"  and
B (i=1,...,Ny, m=1,...,M). Here N(= Y"_| N,,) is the total number of layers of the laminate.
Substltuting Eq. (2) and the second equation of Eq. (3) into Eq. (5) we obtain that

Da

{a} = Al{y} + [BI{ 2 (6)

Pap
DPsb

where [4] is a 4N x 2M constant matrix, [B] is a 4N X 4 constant matrix, and

1,1 1,1 1,] 1.,1 MN M,M }VLNJ M,M
{OC} = {OC<1 >,/3§'),ocg ),ﬂg ),...,065 M),ﬁg M>,OC2< W), g w)}

T
{V}E{yé(ll)’ygl)7a/ 7))5M)}

Because py, ps;, pap, and ps, are usually zero in real applications, they are assumed to be zero in this paper.
Hence, one can obtain from Eq. (6) that

M
O‘gm"l) = Z (%Z’" 7+ aly™ /5>)

J=1

(7)

Il
M=

ﬁgmj) <b m,ij) "/4 +bmt/ )
=1
. (8)
:Z( mzjy4 <mlj )
M
Z( mljy4 +b(mzj )
where a,ﬂ'}"hj) and b,('ln‘w are constants determined by material properties and ply angles. Hence the dis-

placement field of the ith layer of the mth sublaminate (Eq. (1)) can be presented in the following form:

M
ui’"">=u—wxz+y(5”’)z+z<v gis"” + 75 g's"”)
o

m,i m, mi, (9)
ué‘>:v—wyz+y4 Z+Z(V g24/ sgzsl)
ul™ = w4 oz 4 g
where
ggzzzj) ml] +bm1]
g5 = a({é’” 2457 (10)

(m,i,j) (m,i.j) mlJ
8 T = Ay Z"'b

(m,ij) (m,i.j) mzj
8 = ds +b

(m,i.j)

g and gi"") are called shear warping functions, and g\7""
follows from Eqgs. (9) and (2) that the strains are given by

7 and g25 ) are shear coupling functions. It
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61};“ = Vs )+ Z <V4 glzlz” + Vs g lgzl‘/ )

e’ ="+ Z (74 g +79el )

(m,i) m,i (m,i m,i

€7 = Uy + U —ZZny‘FZV(sy + 2740 "‘Z <V4xgz4 Pyl +V4yg14 7 +V5yg1’;“’j>

M
6(1);171) :ux_ZWxx"!_Z’)) +Z (V4Ag13“j +V5Ag§';“j>
=1

_—

) = v, — 2wy + 2+ Y (el + gl
=

6(3;;1,1‘) _ chm‘i) + zzﬁgmz)
2.2. Transverse normal strain
The transverse normal strain of a laminate is mainly due to external normal loads on the top and bottom

surfaces of the laminate and Poisson’s effect caused by inplane strains €y, €5, and €,. It follows from the
normal stress conditions on the top and bottom surfaces and the continuity conditions of u;3 and o33 that

agAS/INM (x7y7ZNM+l7t) —Px = 0
ugmme)(X,J’,ZNmH,Z) —ug'"“l (x Y21, ) 0 for m=1,....M -1

a(;ZNm (X,y,ZN,,,+1,f) O-(;;Hrl 1>(x,y721 ) 0 for m= 1> ,M— 1

ug Y, Y, 2Zig1, 1) —ugm”H (x,y,zir1,t) =0 for i=1,...,N,—1, m=1,....M

ag3>(x yozin, t) — o V2, 6) =0 for i=1,...,N,—1, m=1,....M

o\ (x, v, 21,1) — E | Z(t) + w+ ol + Bg“)zﬂ =0

where p;, denotes the normal stress on the top surface of the laminate, Z(¢) is the rigid-body motion of the
plate along the z-axis, and Ej is the spring constant per unit area of the foundation. If £, = 0 is used, it is
equivalent to 33 = 0. If E;, = oo 1S used 1t 1s equlvalent to a rigid ground These 2N equations can be used
to solve for the 2N unknowns ocg 7 and /3 (i =1,...,N,, m=1,...,M). Substituting the first equation
of Egs. (3) and (11) into Eq. (12) we obtain that

(m,i) (m,i) (m,i) (m,i) Uy

o3 — | %0 93 4y v + | % G s
(m,i) b(mj) b(mt) b(m,i) y
3 30 31 32 Uy + vy

(m,i) (m,i) (m,i) 1 Wiy

(m,i) (m,i) (m,i) w
byy" by bis Wy
M (m,i.j) (m,i.j) (m,ij) (m,ij) Y (m,i) (m,i) (m,i) D3t
_|_Z aye™” ay™ay ayy™ Vay + | % Ay 43 w (13)
b(m-,i-,./') b(m-,i-,./') b(m 4) b(nl’i"/) 0) b(m’l) b(m i) b(m’i)
=1 | P36 37 38 39 /5x) 41 ) 03 7
Vsy

where @\, p\"') alr), and b{) are constants. Hence, we have
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633 —{g30,g31,g32,g3%,g34»g35}

where

{lpo} = {ux7 va uy + UX7 Wxx; Wyy’ ny}T

; - . ; T
e {VSQ,VXM?Q,V?;}

g =gl L 2zp) K =0,1,...,5
g;;’f =ad" 4200 k=6,...,9
g4k Ea4k +22b4k', k=1,2,3

2.3. Stress—strain relation

It follows from Egs. (11) and (14) that the stress—strain relation can be rewritten as

(o) = [0 (st 30 [s (4 + 6)m )
= [2"] (5" 1) + {P" 1)

where
. ) . NT
() = {olt o8, oy ok o8, o2
{lrb2} = {Mx, vya uy + Uy y Wxs Wyyv ny, w, Z}T
(9} = (008.98.99,09 .99}
T ™T
_ T 1 M

{pmy = {o.0, gﬁT’”,o,o,o}T

10 0 —= 0 0 0 07"
0O 1 0 0 —2z 0 0 0
[Sém,i)} = &0 831 832 833 &34 &35 a2 843
0O 0 0 0 O 0 0 0
0 0 0 0 O 0 0 0
Lo o 1 0 0 -2z 0 0]
[ & 0 20, + &15 0 0
0 Zémj + 824 0 925 0
|:S§m,l,j)i| _ 836 837 g3 g3 0
0 0 0 0 Omj + 824z
0 0 0 0 g4z
L20m; + 824 g4 825 Z0u; + &15 0

where 6,,; is the Kronecker delta function.

0
0
0
&2s:2
Omj + &15:
0
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(m,ij)

{%} +g41 Ip3’ +g42 W+g4§” Z+ 2{836,837,&87(%'39} e { U}

(16)

(17)
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3. Finite element formulation
The dynamic version of the principle of virtual work states (Washizu, 1982)
t
/(SKE—6H+8Wnc)dt=O (18)
0

where I1 denotes the elastic energy, Kg the kinetic energy, and W, the non-conservative energy due to
external distributed and/or concentrated loads and dampings.

3.1. Elastic energy

It follows from Eq. (16) that

o1 =323 [ [ (s (o s = [ oo @l + (01 (19)

where A denotes the area of the reference surface, N,, is the total number of layers of the mth sublaminate,
and z; and z;, | indicate the locations of the lower and upper surfaces of the ith layer of the mth sublaminate.
Here we assume that p3, is known and hence dp;, = 0. Moreover, [®] is a (6M + 8) x (6M + 8) symmetric
matrix and {&} is a (6M + 8) x 1 vector given by

M Ny

m=1 i=1 (20)

Using the finite-element discretization scheme, we discretize the displacements as

{uau7w7yil>av(51)a"'7y4 a ( 7 } {q } (2’1)

where {4¢"'} is the displacement vector of the jth element and [N] is a matrix of 2-D shape functions. Here
four-node rectan ular elements are assumed to be used. Each node has 6 +2M DOFs (ie., u,v,w,
Wa, Wy, Ways /4 , ys Ve ,y4 77’5 ")) and there is a rigid-body DOF Z(t). Because Z(t) represents the rigid-body
motion of the plate, no discretization is needed for Z(¢). Hence [N] is a (2M + 4) x (8M + 25) matrix.
Moreover,

{v} =Dl{¢"}, [D]=[I)[N] (22)

where [0] is a (6M +8) x (2M +4) matrix consisting of differential operators, and [D] is a
(6M + 8) x (8M + 25) matrix. Substituting Eq. (22) into Eq. (19) yields

=2 /Am {SQM}T([D]T[@HD]W}+[D]T{@}p3[) Z{&q (K" {g"} + {£11})
= {8q}" (KI{q} + {/}) (23)

where
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(K] = /A D @lplad, {7 = /A (DI (@)py as (24)

N, is the total number of elements, 4 is the area of the jth element, [KV] is the stiffness matrix of the jth
element, {fU} is the elemental load vector due to the loading on the top surface, [K] is the structural
stiffness matrix, and {q} is the structural displacement vector.

We point out here that this finite plate element is a 2-D one but it accounts for 3-D effects caused by
interlaminar shear and normal stresses.

3.2. Kinetic energy

Because of the initial velocity ¥, along the z-direction as shown in Fig. 1, the displacement along the z-
direction consists of two parts. One is w(x, y,z,¢) that results in strains, and the other is Z(#) that accounts
for the rigid-body motion of the laminate. It follows from Eq. (9) that the total displacements can be re-
written as

(e = [se ] (o} 20 s} = 5] ) 25

j=1

where
(o) = 0 200)
{Vo} = {u,0,w,we,w,, 2}
= {V?,vé")}T
W ={{) ey ey}

(26)

100 — 0 0o]™
[S;m”}; 010 0 —z0
001 0 0 1
20 + 15 (i)
m” = Z5m/+g24 825
0

The kinetic energy due to the change of plate thickness is assumed to be negligible and hence «; and f; are
neglected in Eq. (25). Hence, the variation of kinetic energy is given by

8K, = Z Z /A / T Buln YT o im0y dzdd = — /A {on} @] {3} as (27)

where p™? is the mass density of the ith layer of the mth sublaminate, and [®] is a (6 +2M) x (6 + 2M)
symmetric matrix given by

i=1 vz

m=1

Using the same discretization scheme used in Egs. (21) and (22), we obtain that
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{0} =D{¢"}, D= [O]IN] (29)

where [0] is a (6 +2M) x (4 + 2M) matrix consisting of differential operators, and [D] is a (6 +2M) x
(8M + 25) matrix. Substituting Eq. (29) into Eq. (27) yields

8Ke = — zN: /AM {847} D]" [@](D]{4" } ad = - i {8q7} (M {a"} = ~{8q}" M){) (30)
where
[MY] = /A 101" [2]D)as (31)

[MV]] is the mass matrix of the jth element, [M] is the structural mass matrix, and {g} is the structural
displacement vector.

3.3. External loads
The non-conservative virtual work due to external loads is given by
e = / [yd(w + 0z, BN+ 2) = pud(w + oz + B2+ 2)| da (32)
A

where the weight of the structure is assumed to be negligible. Moreover, if the external work due to the
thickness change is assumed to be negligible and hence p;, = E;(w + Z), we have

4
Here we assume that the plate and foundation keep in contact after their first contact. Discretization yields
T )
w+Z={N} g} (34)
where {N} is a 1 x (8M + 25) vector consisting of interpolation functions. Hence, we have
Ne AT ~ ~ AT . Ne 3T . N .
e = | 507 (00— IVEARY (")) ad = 3 g} ({9} - [R9)447})
=1 =1
= {8q} ({F} - [K1{g}) (35)
where
&)= [ neyTas (F) = [ e (30
yul Al
We note that [K [j]] is an extra stiffness matrix due to the elastic foundation.

3.4. Equation of motion

Substituting Egs. (23), (30), and (35) into Eq. (18) yields the equation of motion as

(MI{g} + [CHg} + (K] + [K]{g} = {F} = {/} (37)

where a damping matrix [C] is added.
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4. Some numerical results and discussions

We consider a 2.44 m x 2.44 m x 3.1 cm sandwich plate consisting of a top face sheet of 48 45,/3501-6
graphite-epoxy layers, a HRH10-1/8-4.0 Nomax core of 12.7 mm thickness, and a bottom face sheet of 96
AS4/3501-6 layers, as shown in Fig. 1. The plate supports weights from 2225 to 8900 N uniformly dis-
tributed over the central half of the upper surface, and the plate is dropped at an initial velocity of 3.05 to
15.24 m/s onto a flat ground surface. The dropping height is assumed to be small and negligible. The
ground is sand and is considered to be an isotropic material having an elastic constant £, = 67864000 N/
m?. The material properties of 45,/3501-6 layers are:

E; = 144.8 GPa, Ey» =9.7 GPa, Ey; =9.7 GPa

vip = 0.3, viz = 0.3, vy3 = 0.34

G = 6.0 GPa, Gi3 = 6.0 GPa, Gy = 3.6 Gpa

S1» = 120.7 MPa, S13 = 120.7 MPa, Sy = 89.3 MPa

X; =2.17 GPa, X. = —1.72 GPa, Y; = 53.8 MPa, Y. =Z. = —-205.5 MPa
thickness 7 = 0.127 mm, density = 1614 kg/m’

where E; are Young’s moduli, G;; shear moduli, v;; Poisson’s ratios, S;; shear failure stresses, X; the tensile
failure stress along the fiber, X, the compressive failure stress along the fiber, ¥; the tensile failure stress
perpendicular to the fiber, and ¥, the compressive failure stress perpendicular to the fiber. The HRH10-1/8-
4.0 Nomax honeycomb material has the following material properties:

E; = 80.4 MPa, E» =80.4 MPa, E3; = 1.005 GPa

vi2 = 0.25, vi3 = 0.02, vo3 = 0.02

Gy, = 32.2 MPa, Gy3 = 120.6 MPa, Gy = 75.8 GPa (39)

S13 =177.9 MPa, S>3 = 142.3 MPa, Z. = —3.83 MPa

thickness #, = 12.7 mm, density = 139.22 kg/m’

4.1. Shear warping functions

If only one sublaminate is assumed (i.e., M = m = 1) and the lamination sequences of the top and
bottom laminates are [03] and [05], respectively, the sandwich plate is an orthotropic laminate and hence

there is no shear couplings, i.e., g7/ = ¢!/ = 0 in Eq. (9). Consequently, it follows from Eq. (9) that the
transverse shear warpings W (z) and W(z ) are given by

WI—Z"'gll'sll7 W_Z"‘gzzll (40)
And, it follows from Eq. (11) that

613 /Vs W, 623 //4 Wo (41)

Fig. 3(a) and (b) show the shear warping functions, and Fig. 3(c) and (d) show the distributions of
transverse shear strains. We note that the two shear warping functions are different, and 1] is significantly
different from the shear warping function of isotropic plates. Fig. 3(c) and (d) show that the Nomax core
has larger shear deformations than the two face sheets. Because of orthotropy, Qis ?~0in Eq. (4). Hence,
it follows from Egs. (3), (4) and (41) that

1, —(1,0)
G(n)/ st lev 023 /V4 =0y Wo (42)
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Fig. 3. Transverse shear warpings of the [05, /core/03] sandwich plate using one sublaminate: (a) W, (b) W, (c) €13/7s, (d) €23/74, (€)
013/7s, and (f) 623/7,.

Fig. 3(e) and (f) show the distributions and continuity of transverse shear stresses. We note that the as-
sumed lamination sequence results in a large 0,3 in the core and a large o3 in the face sheets.

If three sublaminates (i.e., M = 3) are used in modeling the [05,/core/05] sandwich plate with the
bottom face sheet as the first sublaminate, the Nomax core as the second sublaminate, and the top face
sheet as the third sublaminate, it follows from Eq. (9) that the shear warpings are given by

1, 1) (L,i,1) (1,i,2) 113
" —uwez =y (Z+g15 )+v5g15 +P gl

2, 2.,1) (2.i2) 3) (23
”(1> ”+sz—7g ng ‘H’s (z+g15 )"‘Vg)gis") (43)

3. (3,,1) (3,1,2) 3) (3,i,3)
W =t wz =gl 490l 90 (2 + 1)
Fig 4(a) (c) show the shear warpings W, W;,, and W3 corresponding to ygl), y§2>, and y?, respectively. If

y5 = y = ys is assurned 1n Eq (43) Fl% 4(d) shows the distribution of (u(l'"‘i) — U+ wz) /y(sl), which is the
same as Fig. 3(a). If 10/ is assumed in Eq. (43), Fig. 4(e) shows the distribution of
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Fig. 4. Transverse shear warpings of the [05,/core/03] sandwich plate using three sublaminates: (a) Wi, (b) Wia, (c) Wi, (d)
Wi + Wia + W, (€) 0.1 + Wha + 0.1, and (f) Wiy + 0.1W15 + WM.

@™ — u + wyz) [y Moreover if 3\ = 10y% = 9% is assumed in Eq. (43), Fig. 4(f) shows the distribution

of (™ — u + wyz)/7\"). The shear warping functions shown in Fig. 4(d)—(f) are very different, but each one
of them has a continuous o3 because each one of Wj; has a continuous a;3. It has been shown in the lit-
erature that the shapes of shear warping functions may vary with the spatial location, vibration frequency,
loading and boundary conditions, and structural d1mens1ons (SaV01a and Reddy, 1992; Renton, 1991).
Because the actual warping functions depend on the ratio y5 y5 y5 ) and y5 are determined by loading and
boundary conditions, the actual warping functions become deformation-dependent. In other words, the use
of sublaminates and hence more dependent variables enables the modeling of shear warping functions that
change with the spatiallocation, vibration frequency, loading and boundary conditions, and structural
dimensions. If each layer is treated as a sublaminate, the number of dependent variables will be 3 + 2N (i.e.,
u,v,w,yfll),y(sl),. . .,yiN),ygN)) and the theory is equivalent to that of Barbero et al. (1990).

If the sandwich plate is not an orthotropic laminate, shear coupling functions g4 and g»s exist and hence
the distributions of ¢;3 and e,; depend on the values of y, and ys, which are determined by loading and
boundary conditions. For example, if the lamination of the sandwich plate is [—455; /core/455] and M = 1
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Fig. 5. Shear warping and coupling functions of the [-455¢/core/455] sandwich plate using one sublaminate: (a) z+g<115j‘]), (b)
2+ g™, (0) gy, and (d) g3

is used, Fig. 5 shows the shear warping functions z + gils‘i‘l) and z + g&"’"l) and the shear coupling functions
g\"" and g{t"". If the lamination of the sandwich plate is [03,/305/05,/core/0%,/603,/0%,] and M = 1 is
used, Fig. 6 shows the shear warping functions and shear coupling functions. We note that shear coupling

functions are significantly changed by the stacking sequence.

4.2. Transverse normal strain

The transverse normal strain es; is induced by external normal loads and Poisson’s effect due to in-plane
strains. It follows from Eq. (14) that g3, represents the transverse normal strain caused by the inplane
extensional strain u,, g3, is caused by the in-plane extensional strain v,, g3, is caused by the in-plane shear
strain u, + v,, g33 is caused by the bending curvature w,,, gi4 is caused by the bending curvature w,,, gss is
caused by the twisting curvature w,,, gu; is caused by the external load ps,, g4, is caused by the deformation
w against the foundation, g43 is caused by the rigid-body movement Z against the foundation, and gs¢, g37,
g3s, and gso are due to the variations of y, and 7y across the reference plane. Eq. (15) shows that these
functions are linear functions of z. For the [05,/core/03] sandwich plate, Fig. 7 shows some of the
transverse normal strain functions. Because this laminate is orthotropic, g3, = g35 = g3 = €39 = 0 and
g4 = g43. We note that, although g4; (caused by ps;) is smaller than others, p;, can have a value much larger
than others because it has a different unit.

For the [05,/303,/05,/core/05,/605,/0%,] sandwich plate, Fig. 8 shows the normal strain functions.
Again, g4, = g43. However, because of anisotropy, g3, &35, €36, and gs¢ are non-trivial.

4.3. Discussions

For any sandwich plate with a specific stacking sequence, one can obtain its shear warping functions and
normal strain functions by following the same procedures shown in Sections 4.1 and 4.2. After the u, v, w,
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yf‘i), and y?) are obtained by solving the whole structural problem with specified loading and boundary
conditions, one can use Egs. (11) and (14) to obtain the distributions of strains, and use Eqgs. (3) and (4) to
obtain stresses.

Transient dynamic analysis using the derived finite element model (Eq. (37)), predictions of the initiation
and location of critical matrix crack and the threshold of impact damage using Hashin’s criterion (Hashin,
1980), and modeling and dynamics of the sandwich plate with cracks will be reported separately.

5. Concluding remarks

We presented a 2-D sandwich plate theory that can account for layerwise higher-order transverse
shear strains, transverse normal stress, continuity of interlaminar shear and normal stresses, normal stresses
on the top and bottom surfaces, free shear-stress conditions on the bonding surfaces, and deforma-
tion dependency of shear warpings. The derived shear strain functions show interesting shear coupling

effects, and the normal strain functions show thickness change due to external normal loads and Poisson’s
effect.
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